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Abstract- A linear elastic fracture mechanics model is developed for a periodic composite geometry
with a single cracked layer under uniform longitudinal strain. The interface between the fiber and
the matrix can be nonhomogeneous, homogeneous or perfect. Four fracture mechanics models are
considered: (I) dilute fiber volume fraction composite with nonhomogeneous interphases; (2)
periodic composite with nondilute fiber volume fraction; (3) periodic composite with irregular fiber
spacing near a matrix layer; (4) hybrid composites with more than one type of fiber. The stress
intensity factors at the crack tips and the interface stress fields are studied to understand the fracture
mechanics of composites as a function of the relative elastic moduli of the fiber, the matrix and the
interphase, and the global and local fiber volume fractions.

INTRODUCTION

The presence ofmore than one constituent in continuous fiber reinforced composites results
in many possible mechanisms of fracture. Many micromechanical models of composites
have been developed to understand these mechanisms. These models account for axisym
metric cracks (Pagano and Brown, 1993), a fiber crack in dilute fiber volume fraction
composites (Gupta, 1973), periodic cracks in nondilute fiber volume fraction composites
(Erdogan and Bakioglu, 1976), and cracks in composites with nonhomogeneous interphases
(Delale and Erdogan, 1988; Erdogan et al., 1991). The above list is not complete but only
presents the wide variety of problems solved in the literature on the fracture mechanics of
composites.

In this study, a planar fracture mechanics model has been developed for a composite
with a single damaged fiber or matrix layer. The fiber and the matrix layers are approximated
by infinitely long, homogeneous, isotropic strips of finite width. These strips can have
dissimilar elastic properties and widths. The fiber-matrix interphase (Drzal, 1983) between
the fiber and the matrix can be nonhomogeneous, homogeneous or perfect.

Four important problems in fracture mechanics of composites are studied using the
model developed in this paper. These are:

Modell: composites with nonhomogeneous interphases,
Model 2: composites with nondilute fiber volume fractions,
Model 3 : composites with irregular fiber spacing,
Model 4 : hybrid composites,

with an initially damaged layer under a uniform remote axial strain along the length of the
fiber.

The stress intensity factors and the stress fields at the crack tips are studied for the
above models to understand the fracture mechanics of composites as a function of the
relative elastic moduli of the fiber, the matrix and the interphase, and the global and local
fiber volume fractions.

Modell: composites with nonhomogeneous interphases
In a fiber reinforced composite a separate region, labeled the interphase (Drzal, 1983),

may exist between the pure fiber material and the bulk matrix material. The interphase is

2053



2054 V. T. BECHEL and A. K. KAW

important in the mechanics of a composite. The transverse strength and stiffness, the axial
compressive strength and the fracture toughness of a composite are influenced by the
interphase properties. Jayaram et al. (1993a, b) reviewed the elastic and thermal effects of
interphases for undamaged composites, while Chamis (1974) and Cornie et al. (1991)
studied the effect of interphases on the fracture toughness of a composite.

The interphase region has different properties from that of the fiber and the matrix. It
may consist of multiple regions of chemically distinct phases (Drzal, 1986; Brennan, 1987)
or its properties may vary as a function of position along its width (Sottos et al., 1992).
Both these types of interphases can be modeled in this study and will henceforth be called
nonhomogeneous interphases.

Fracture mechanics models, which account for nonhomogeneous interphases, have
previously been developed by Delale and Erdogan (1988), Erdogan et al. (1991) and Kaw
et al. (1992). In the above studies, the elastic moduli of the interphase varied exponentially
along its width. In this paper, the effect of a nonhomogeneous interphase on the fracture
mechanics of a composite is studied. However, in this paper, unlike the above studies, the
interphase elastic moduli may vary as any arbitrary piecewise continuous function along
its width.

Model 2 : composites with nondilute fiber volume fractions
The effect of nondilute fiber volume fractions has been mostly excluded in studying

the fracture mechanics ofcomposites. Often, micromechanical composite fracture problems
are solved using techniques where a crack is assumed in a layer bonded to an infinite layer.
This may approximate composites either with dilute fiber volume fractions (Gupta, 1973)
or a selfconsistent geometry (Whitney and Brown, 1993; Mori and Tanaka, 1973). Models
which do use nondilute fiber volume fractions, also assume periodic cracks (Erdogan and
Bakioglu, 1976). The current model is used to study the fracture mechanics of a single
damaged layer composite with a nondilute fiber volume fraction.

Model 3 : composites with irregular fiber spacing
The processing techniques for fiber reinforced composites produce internal defects,

such as microcracks and uneven fiber spacing. Some fibers get placed further from each
other than the average fiber distance, while other fibers may be placed closer together.

Barsoum et al. (1992) tested ceramic matrix composite samples in a three point bend
test and found that matrix cracks initiated at a lower stress as the local fiber spacing
increased. The present analytical model is used for qualitatively studying the matrix crack
initiation stress as a function of this local fiber spacing.

Model 4 : hybrid composites
Hybrid composites with more than one fiber type are developed for better impact

resistance, increased fracture toughness and lower cost (Summerscales and Short, 1978;
Agarwal and Broutman, 1991).

The fracture of multi-fiber hybrid composites is studied using the model developed in
this paper. In particular, the effects of the elastic modulus and the volume fraction of the
hybrid fibers on the fracture mechanics ofa single damaged layer composite are investigated.

FORMULATION AND SOLUTION

The geometry of the problem is shown in Fig. 1. The composite consists of (2n - 1)
planar strips of infinite length but finite width which are perfectly bonded, isotropic and
linearly elastic. The central layer of width 2h 1> Young's modulus E 1> shear modulus,
J.l1 (= E I [2(1 +v1)]) and Poisson's ratio vI approximates a damaged fiber or matrix region.
The crack has a half-crack length of "a" and is symmetric about the x I and y axes. The
crack may touch the interface of the cracked layer and the first undamaged layer. The
remaining undamaged fibers, the interphases and the matrix are approximated by (2n - 2)
infinite strips of width hi' The Young's modulus, E;(x;) and Poisson's ratio, Vi (Xi) of each
undamaged strip may follow any variation through its width.
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Fig. 1. Geometry of a composite with a single damaged layer.

The layered composite model is loaded with a remote uniform axial tensile strain, 8.

Since the remote strain would cause a constant axial stress across each strip if no crack
were present, superposition can be used to solve the problem. The overall solution is the
sum of a problem with a damaged layer with a crack pressure ofp = E 18/(1- vi) for plane
strain and p = E j 8 for plane stress, and an uncracked composite with a remote axial strain,
8. The uncracked problem has a simple solution. Therefore, only the pressurized crack
problem is solved here.

Stress and displacement field equations
The displacement and stress field equations for a homogeneous infinitely long strip of

finite width containing a symmetric crack aligned with the horizontal (x j) axis are given
(Gupta, 1973) as
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(2c)

The displacement and stress field equations for the ith nonhomogeneous infinite strip
[Young's modulus and Poisson's ratio varying exponentially through the width
(Ej(xj) = E~ efl,x" Vj(xj) = (a~+b~xj) efl,X,)] , are given (Delale and Erdogan, 1988; Kawet
at., 1992):

.( . ) =~ fOO ('1
2
([C~('1)Xi + c~('1) + Cil ('1)J -m',x,

U, X" Y E' 2 ' (' ) 2 , en 0 0 m2 m2 m2

(3a)

2m\ c~('1» e-m',x,+ «m~) 2(C3('1) + C~('1)x;)

+ 2m2C4('1» e-m',X,] + (a~ + b~Xi)'1[(Cj] ('1)

. , . . ,sin ('1Y)
+ C2('1)Xi) em,x, + (C3('1) +C4('1)Xj) em ,X,]) 2 d'1, (3b)

(j.~x(X;,Y) = ~2 IX; ~2 [(C\('1)+C~('1)x;)em"X'+(C~('1)+C~('1)Xi)em'2X,] cos ('1Y) d'1, (4a)

(j~y(Xi' y) = ~ L'" ~ ([(mD 2(cH'1) + C~('1)Xi) +2mi]C~('1)] em',x, + [(m~)2(c~('1)

+ C~('1)Xi) +2m~c~('1)] em'2 X,) cos ('1Y) d'1, (4b)

(j~y(Xj,Y) = ~ Loo ~ ([m\ (c\ ('1) + c~('1)X;) + C2('1)] em',x,

+ [m~(cj3('1) + C4('1)X j ) + C~('1)] em'2 X,) sin (flY) dfl, (4c)

where
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; Pi + ( 2+ Pl)1/
2m2 = - rr -

2 4
(5a, b)

E~, Pi, a~ and b~ are four constants found from the Young's modulus and Poisson's
ratio at the two edges (Xi = 0 and Xi = hi) of the nonhomogeneous strip.

The stress and displacement fields for the nonhomogeneous strips can also be used for
a homogeneous strip by allowing b~ = Pi = O.

Boundary and continuity conditions
The continuity and boundary conditions are applied to the above stress and dis

placement equations to find the solution. The continuity conditions at the interfaces ofeach
strip are given by

a~Ah;,y) = a~~ 1(O,Y),

; HI)axAh;,Y) = axy (O,Y,

u;(hi,y) = UH 1(O,Y),

vi(h;,y) = Vi+I(O,Y),

(6a)

(6b)

(6c)

(6d)

where i = 1,2,3, ... (n-l), and (2n-l) is the number of strips. Since the problem is
symmetric, only the upper right quarter of the geometry was considered where (n - I) strips
are bonded to the right of the cracked layer.

The free edge boundary conditions on the outer layer n are

a~Ah.,y) = 0,

a~Ahn,Y) = o.

Finally, mixed boundary conditions at Y = 0 in the cracked layer are given by

a;y(XI> 0) = -p, Ixli < a,

VI(XI>O) = 0, a < Ixli < hI>

Vi(Xi' O) = 0, 0 < Xi < hi, i = 2,3, ... , n.

(7a)

(7b)

(8a)

(8b)

(8c)

The condition of a~Ax;,0) = 0 is automatically satisfied for all the strips byeqns (2c) and
(4c).

Derivation of the solution
The function </J 1(e) can be rewrittten in terms of the slope of the crack opening displace

ment, [G(t) = dVI(t,O)/dt] as

-2ia

rP I (e) =--1 G(t) sin (et) dt.
K 1+ 0

(9)

There are now a total of (4n-l) unknown functions, namely the three unknown
functions fl> 91> G(t) [instead of rPl(e)] from the central damaged strip and (4n-l)
unknown functions, C~-4 from the other (n-I) strips [see eqns (1)-(4)]. There are (4n-2)
boundary and continuity conditions given by eqns (6) and (7). These (4n-2) conditions
then allow (4n - 2) unknowns to be written in terms of only one unknown in a matrix form
as

[A][B] = [C]. (10)

The coefficient matrix [A] of order (4n - 2) x (4n - 2) contains functions of Xi, t and n,
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[B] is a vector of order (4n-2) of the unknown functions excluding G(t). The right hand
side vector [C] of order (4n - 2) contains only integrals of G(t) of the form

(11)

The above system of equations is solved implicity for fl and 9 I in terms of the integrals
of G(t). Substituting these implicit expressions in the remaining mixed boundary condition
[eqn (8a)] gives

f
a G(t) fa np(l +/( )
--dt+ G(t)K(t,xl)dt = - I ,

-a t-XI -a 4111
-a < XI < a. (12)

Equation (12) is a Cauchy principal singular integral equation. The numerical technique to
solve eqn (12) is given in Gupta (1973).

Asymptotic analysis
The asymptotic analysis of the integral eqn (12) for a crack located in a homogeneous

material, with its tip impinging on a nonhomogeneous material, has already been done by
Kaw et al. (1992). Their investigation verified that the singularity in the slope function is
of the type G(t) = H(t)j(a 2-t2)Y. The power of the singularity,)' is identical to the case of
the crack impinging on a homogeneous material with properties which are the same as
those of the nonhomogeneous material at the interface. The value of the power of the
singularity,)', is given by the root (0 <)' < I) of the characteristic equation

(13)

In eqn (13), ..1. 1 and ..1. 2 are functions of the elastic properties of the materials on either
side of the interface that the crack tip is embedded in and are given by

(14a,b)

where III and 112 are the shear moduli of strips 1 and 2 at the interface, respectively, and v I

and V2 are the Poisson's ratios of strips 1 and 2 at the interface, respectively, and

(3 -Vi)
Ki = (I +v) (plane stress),

K; = 3 -4Vi (plane strain).

Stress intensity factor and stresses
The stress intensity factor at the crack tip is calculated as

K= limj2(xl-a)I/2 CT}y(x\,0), if a<h],
Xl-a+

(ISa)

(lSb)

(16)

where CTyy is the normal stress in front of the crack tip. The stress intensity factor is then
expressed in terms of the numerical solution variables as
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where

(18)

and

(19)

The stresses are calculated by solving eqn (12) numerically and substituting the
unknown functions in the stress field [eqns (2a-e) and (4a-e)].

Definition of models
As discussed in the introduction, four families of composite fracture problems are

solved.

Modell: composites with nonhomogeneous interphases
The geometry for this model is shown in Fig. 2. A cracked fiber layer is attached

through a nonhomogeneous interphase ofwidth h2 to a homogeneous matrix layer ofwidth
hm » hr·

The Young's modulus, E2(X2) and the Poisson's ratio, V2(X2) of the interphase can
vary arbitrarily through the width of the interphase, h2• This is made possible by approxi
mating the given elastic moduli variation in the interphase by piecewise continuous expo
nentially varying splines. Geometrically, the interphase strip is divided into "q" substrips.
In each substrip 'j", j = 1,2, ... , q, the elastic moduli varies exponentially through its
width (11/ 1-~) as

E j( ) Ej p.x 2 hi < < hj+ I . 1 22 X2 = Oe J '2 X2 2, J= , , ... ,q,
j ( ) (j + l.i ) /I.x hj hj + I . 1 2V2 X2 = ao LrOX2 e J 2, 2 < X2 < 2 , J = , ,... ,q,

h1 = 0

h~+' = h2•
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Fig. 2. Geometry of a composite with a nonhomogeneous interphase.
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The width (Izlt 1-W2) and the number of the substrips (q) needed are found iteratively until
the relative difference between the elastic moduli of the interphase, E2(X2) and V2(X2), and
the evaluated exponential splines, E~(X2) and V~(X2)' are within a prespecified tolerance. A
tolerance of I% was used in this study. If the interphase is a multicomponent phase (Drzal,
1983) of chemically distinct phases, each component of the interphase is approximated by
a separate homogeneous layer.

The interphase elastic properties are approximated by exponentially varying splines
through its width because derivation of exact displacement and stress fields in Fourier
transforms are only possible for exponential variations (Delale and Erdogan, 1988). More
over, these displacement and stress fields were found possible only for plane stress
conditions. This is also the only reason for choosing plane stress conditions for the whole
composite geometry for Model I.

A continuous variation of the elastic moduli was assumed through the interphase width
for this study, but is not necessary. The discontinuities in the Young's modulus and the
Poisson's ratio in the interphase could be included. Assuming continuity at the strip
interfaces gives

[E~(h~+ ')JI .+ 1 .Pj = log E~(h~) (h~ - h~),

Eb = E~(h~),

bb = [v2(h~+I)eP/W'-hJ,)-V2(h~)]/(h~+I_h~),

a1> = v2(hD, j = i,2, ... ,q.

(2Ia)

(2Ib)

(2Ic)

(2Id)

The elastic moduli of the interphase are assumed to vary quadratically (QI, Q2, Q3,
Q4) or linearly along is width. The elastic moduli are assumed to be continuous at the fiber
interphase and the interphase-matrix interfaces for all of the interphase substrips. The
linear variations of the interphase properties is shown to be approximated by substrips with
exponentially varying properties in Fig. 3(a). Figure 3(b) shows the four quadratic vari
ations of the Young's modulus in an interphase strip. The slope of the interphase elastic
properties with respect to the width is zero in QI at the fiber-interphase interface and is
zero in Q4 at the interphase-matrix interface. The variation Q2 lies between the cases of
linear variation and QI, and the variation Q3 lies between the cases of the linear variation
and Q4. Applying these conditions yields

Linear: (Em-Er) (22a)E2(X2) = h
2

X2 + Er,

QI: (Em -Er) 2 (22b)E2(X2) = h
2
2 X2 +Er,

Q2: (Em-Er) 2 (Em-Er) (22c)E2(X2) = 2h/ X2 + 2h
2

X2+ Er,

Q3: (Em-Er) 2 (Em-Er) E (22d)E2(X2) = - 2h/ X2 +3 2h
2

X2 + r,

Q4: ( Em - Er) 2 ( Em - Er) (22e)E2(X2) = - h
2
2 X2 +2 h

2
X2 +Er,

where Er and Em are the fiber and the matrix Young's moduli, respectively. In eqns (22a
e), X2 is the horizontal distance from the cracked layer-interphase interface.
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Fig. 3(a) Dividing the nonhomogeneous interphase into equivalent strips with exponentially varying
elastic moduli; (b) variations of interphase elastic moduli.

Model 2 : composites with nondi/ute fiber volume fraction
Figure 4 shows a cracked layer bonded to several alternating layers of the matrix and

the fiber. Plane strain is assumed. This model investigates the effects of the nondilute fiber
volume fraction on the fracture mechanics of composites. The global fiber volume fraction,
Vfg , is calculated as

J,
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j4-- h n ---+i f

I I, -,
Em E, Em
vm v, vm

... l ~ ...
~2a--J "1 x2

I I
f ~hm "I- h, -,.- hm...... f h n --PI

Fig. 4. Geometry of a composite with a nondilute fiber volume fraction.
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Fig. 5. Geometry of a composite with irregular fiber spacing.

(23)

where hm and hr are the matrix layer and the fiber layer widths, respectively. All the fiber
layers are of equal width, hr and all the matrix layers are also of equal width, hm . This
simulates a uniform arrangement of the fibers in the composite.

Model 3 : composites with irregular fiber spacing
An arrangement similar to the one in Model 2 is used to model the effect of the

nonuniformly spaced fibers (Fig. 5). A cracked matrix layer of width hmspec is bonded to
alternating fiber and matrix layers of width hr and hm , respectively. The local fiber volume
fraction, Vfl , is calculated based on the cracked matrix layer width as

(24)

The global fiber volume fraction is calculated based on the width of the undamaged matrix
layer using eqn (23). This simulates two fibers placed closer to, or further from, each other
than the average distance between the fibers. All other fibers are spaced uniformly.

Model 4 : hybrid composites
Figure 6 shows the model with more than one type of fiber. A hybrid composite is

simulated here by alternating high and low stiffness fiber layers. The stiffer fibers are referred
to as the original fibers, and the less stiff fibers as the hybrid fibers. The same width, hr is
assumed for all the fiber layers and the same width, hm is assumed for the matrix layers.
Therefore, a combined fiber volume fraction including fibers of both types is calculated
using eqn (23).

DISCUSSION OF RESULTS

The following checks were made to verify the numerical results of this study. All
boundary and continuity conditions were found to be satisfied. Also, the stress intensity
factors (SIF) at the crack tips and the stresses were checked with the special cases available
in the literature. These include the Griffith crack problem (Sneddon, 1951), the problem of
a cracked layer between two homogeneous half-planes (Gupta, 1973), and the problem of
a cracked layer bonded to two homogeneous half-planes through a nonhomogeneous
interphase (Kaw et al., 1992).
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Fig. 6. Geometry of a hybrid composite.

For all the models except Model 3, the fiber and the matrix Poisson's ratio throughout
the study is taken equal to 0.3 and the crack is assumed to be up to the interface, a = hI.
Also, all the models, except Model I, are solved with plane strain assumptions.

Modell: composites with nonhomogeneous interphases
Figure 7 shows the normalized SIF as a function of the fiber to matrix moduli ratio,

EdEm for five types of nonhomogeneous interphases and for a crack touching the interface
(a = hI)'

In Fig. 7, the SIF was normalized by the SIF for the interphase with the linear variation
of elastic properties. The plot for the linear interphase case is, hence, a constant line. A
range of 1/3 < EdEm < 3 is chosen. Cases outside the above EdEm range required pro
hibitive computational times. However, a difference of as much as 14% was found between
the normalized SIF for the QI and Q4 variations for a range of 1/3 < EdEm < 3. The effects
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o 0.5 1.5 2 2.5 3

Fiber to Matrix Elastic Moduli Ratio

Fig. 7. Normalized stress intensity factor as a function of fiber to matrix elastic moduli ratio for
nonhomogeneous interphase cases (Modell, a/hi = I, V,« 1).
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of varying properties in the interphase would be magnified for typical advanced polymer
matrix composites where the ratio EelEmis as high as 80/1.

In Fig. 7, the normalized SIF was lower for Ql than for the other four variations when
EelEm > I. To understand this, an average Young's modulus, Eave was found near the crack
tip over a distance of + 10% of the interphase width starting at the crack tip as

(25)

This calculation for the cases of EelEm> 1 gives the order,

and vice versa for EelEm < 1. Therefore, for cases where EelEm > 1, the crack tip is embedded
in a region of higher average elastic moduli for QI, which locally carries more load and
relieves the stress concentration at the crack tip. The relative average crack tip elastic moduli
theory also explains why the graph inverts for EelEm < I.

The same graph shows that for EelEm > 1, the normalized SIF increases for the Q3
and Q4 cases and decreases for the Q2 and Ql cases as a function of EelEm. The plot is
then inverted for EelEm < 1. This is again explained by the concentration of stiffer material
near the crack tip.

Model 2 : composites with nondi/ute fiber volume fraction
A study was done first to determine how many strips were required for convergent

results for the composite geometry with a nondilute fiber volume fraction. The extreme case
of Vf = 0.5 and EelEm = 1/20 was used. The axial (O"yy) and transverse (O"xx) stresses at
X2/h, = y/h l = 1.0 normalized by the crack pressure, and the SIF normalized by (p-Ja)
changed negligibly for more than seven total (n 4) layers (Figs 8 and 9).

The normalized SIF is plotted as a function of the global Vr in Fig. 10 for cracks up
to the interface (a = h I)' The SIF was normalized by the SIF for the same EdEm ratio for
Gupta's (1973) model (Vf = 0). This normalization isolates the effect of the Vf on the SIF.
In all cases, EelEm was calculated based on the cracked layer being the fiber layer.

3

2.97
2 4 6 8 10

Tota' Number of Strips

Fig. 8. Normalized stress intensity factor as a function of number of strips (Model 2, EdEm 1/20,
a/h, = I, VI 0.5).
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Fig. 9. Normalized stresses as a function of number of strips (Model 2, EriEm = 1/20, a/h I = I,
V] = 0.5).

In Fig. 10, the normalized SIF decreases about linearly with the increasing Vr and
EriEm for EriEm > 1. These results are expected since a stiff fiber layer next to the damaged
fiber layer is located closer for increasing Vr. However, for EriEm < 1, the decrease in the
normalized SIF with an increase in Vr is negligible. For example, only a difference of 1%
was observed between the range of 0 < Vr < 0.5 for a typical EriEm = 1/6.

The average axial stress y/h] = 1 is plotted as a function of the global Vr for constant
EriEm in Fig. 11. The average axial stress at y/h] = 1 across the cracked layer normalized
by the crack pressure is a measure of the load diffusion in the cracked layer. The average
axial stress values increased by as much as 12% for EriEm = 12/1 when increasing the Vr
from zero to one half. The average axial stress increases with an increase in EriEm for
ErlEm > 1 and vice versa.
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Fig. 10. Normalized stress intensity factor as a function of global fiber volume fraction for constant
fiber to matrix elastic moduli ratio (Model 2, a/hI = I).
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Fig. II. Average normalized normal stress as a function of global fiber volume fraction for constant
fiber to matrix elastic moduli ratio (Model 2, aJh, = I).

The present model was also used to understand the crack deflection criteria for com
posites. A transverse crack at a fiber-matrix interface can either transversely penetrate the
adjacent medium or grow along the interface. The determination of the crack path is an
indication of the failure mechanism in a composite and a measure of its fracture toughness.

The determination of the crack path is made as follows in the present study. Following
Swenson and Rao (1970), the normalized peel stress (NPS) and the normalized shear stress
(NSS) at the crack tip (a = h 1) are calculated as follows

(26)

(27)

Note that the stresses in the numerator and the denominator in eqns (26) and (27) are
unbounded. Hence, the stresses are first numerically calculated near the crack tip along the
interfacefor the peel [numerator ofeqn (26)] and the shear stresses [numerator ofeqn (27)],
and along the crack plane for axial stresses [denominator ofeqns (26) and (27)]. Then these
stresses are used in the interpolation curve (Cook and Erdogan, 1972)

(28)

to give the three stresses of eqns (26) and (27) at the crack tip, where r is the distance from
the crack tip and y is the order of the singularity of the stresses given by eqn (13). The
ratios NPS and NSS, which are bounded, can now be calculated using eqns (26) and (27).

A crack deflection criteria is defined by Cornie et al. (1991). They report that ifNPS
(NSS) is greater than the ratio of the normal (shear) strength of the interface to the normal
strength of the uncracked matrix, then the crack is assumed to debond along the interface.
Otherwise, the crack is assumed to penetrate the matrix.
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Fig. 12. Normalized interfacial peel and shear stresses at the crack tip as a function offiber to matrix
elastic moduli ratio for constant global fiber volume fraction (Model 2, a/hI = 1, Vr = 0.5).

The NPS and NSS at the crack tip are plotted as a function of EriEm for constant
global Vr in Fig. 12. As EriErn increases, NSS at the crack tip increases while NPS at the
crack tip decreases. This implies that the interfacial bond at the crack tip is more likely to
fail in a shear mode than in an opening mode as EdEm increases. Also, these stress ratios
were found to be independent of Vr. Hence the crack deflection criteria is dependent only
on the relative elastic moduli of the fiber and the matrix. These conclusions are confirmed
by Cornie et al. (1991) and He and Hutchinson (1989).

Model 3 : composites with irregular fiber spacing
The composites with irregular fiber spacing problem was solved for the composite

system considered by Wang et al. (1992). They considered the carbonJborosilicates system
(Ef = 380 GPa, Vf = 0.26, Em = 63 GPa, Vrn = 0.3).

The effects on the SIF having uniformly spaced layers in the composite model are
shown in Fig. 13 for the carbonJborosilicates system. The normalized SIF as a function of
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Fig. 13. Normalized stress intensity factor as a function of normalized crack length for constant
local fiber volume fraction (Model 3, Vrg = 0.5, EriEm = 380/63).
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the normalized crack length, a/hI for constant global Vrare plotted. The SrF is normalized
by the SIF for the case of uniform spacing for the same normalized crack lengths. This
isolates the effect of the local fiber spacing.

The global fiber volume fraction used was 0.5. Hence, the no defect case is a local fiber
volume fraction of 0.5. The local fiber volume fraction was calculated from eqn (24) and
is a measure of how much the width of the cracked matrix layer differs from the width of
the other uniformly spaced matrix layers.

The normalized SIFs are nearly independent of the normalized crack length except
near the extremes of a very small crack and a crack approaching the interface. As expected,
for crack lengths approaching zero, the normalized srF approaches one (Griffith crack
problem). As the crack tip approached the fiber~matrix interface, the normalizd SIF
increased for a local Vf < 0.5. and decreased for a local Vf > 0.5.

Therefore, a crack in a matrix region between two fibers placed farther apart than the
other fibers is more likely to grow that the crack located in a matrix region between two
fibers uniformly spaced. If it is assumed that microcracks pre-exist in the matrix and a
matrix crack is initiated when the microcracks begin to grow, then the matrix crack initiation
stress (MCIS) is lower in a region of low local Vf •

Figure 13 also indicates that a matrix crack is less li!cely to develop and grow between
fibers that are placed closer together. This correlates with trends in the experimental data
from Barsoum et al. 1992). Preliminary results from Barsoum et al. (1992) showed that
the MCIS was approximately halved when the local fiber spacing doubled. In Fig. 13, the
normalized SIF doubled between a local Vf of 0.4 and 0.2 which corresponds to doubling
the local fiber spacing. This observation is made for the constant portion of the curves for
a normalized crack length between 0.2 and 0.8. Since the MCIS is assumed to be inversely
proportional to the stress intensity factor, the analytical results track their experimental
results. Conversely, for a composite loaded transversely, Xu et at. (1992) concluded that
the most likely crack path is not between the fibers placed far apart, but between the
fibers placed close to each other. Hence, the uniform placement of fibers is critical in the
manufacturing of high fracture toughness composites used under complex loading.

Model 4 : hybrid composites
Figure 6 shows the arrangement of the fiber and the matrix layers for the hybrid

composite problem. The cracked fiber and every other fiber layer after that are of the
original stiffer fiber type. The second fiber layer and every other fiber layer after that are
the less stiff hybrid fiber layers. The widths of the two fiber types are equal. Figure 14 shows
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Fig. 14. Normalized stress intensity factor as a function of hybrid fiber to matrix elastic moduli
ratio (Model 4, E f (Origill,II/Em = 80, a/hi = I, Vf = 0.5).
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Fig. 15. Normalized stress intensity factor as a function of global fiber volume fraction (Model 4,
E f (Origin,1)/Em = 80, Ef(h,brid)/Em = 20, a/h, = I).

a graph of the normalized SIF as a function of the hybrid EriEm for constant Vrfor a/h I = 1.
The combined fiber volume fraction was taken as 0.5. A range ofErlEm = 20/1 (glass/epoxy)
to 80/1 (graphite/epoxy) was used. The value of EriEm for the original fiber layers was taken
as 80/1. The SIP was normalized by the SIF for the non-hybrid case where all the fiber
layers have EriEm = 80/1.

Figure 14 shows that the normalized SIF increases linearly with a decrease in the
hybrid fiber elastic moduli. This corresponds to a drop in the elastic moduli of the second
fiber layer which then is carrying less load.

The normalized SIP as a function of the Vr (combined volume fraction of both fiber
constituents) for constant EriEm ratio is shown in Fig. IS. The value ofEriEm for the original
fibers and the hybrid fibers is again assumed as 80/1 and 20/1, respectively. The SIP is
normalized by the SIF for the nonhybrid case (all fiber layers having EriEm = 80/1) of the
corresponding Vr. The normalized SIF increases linearly with increasing Vr• These results
indicate that the effect of replacing some original fibers with less stiff hybrid fibers is more
significant at higher fiber volume fractions.

CONCLUSIONS

The following conclusions are made about the initially damaged, layered composite
model under a remote axial strain studied in this work.

1. The fibers and the matrix layers away from the damaged layer affect the critical
stresses and the stress intensity factor at the crack tip. However, the ratios of the stresses
at the crack tip, which determine crack deflection, are dependent only on the relative
properties of the damaged and the adjacent medium, and are independent of the geometry
and the material properties away from the crack tip.

2. A crack is less likely to grow into a nonhomogeneous interphase that has a greater
average elastic moduli near the cracked layer-interphase interface.

3. The stress intensity factor decreases linearly with an increase in the fiber volume
fraction if the fiber is stiffer than the matrix. This decrease becomes higher as the fiber to
matrix moduli ratio increases. For a typical fiber volume fraction of 0.5, this decrease is
about I% per unit increase in the fiber to matrix moduli ratio. However, if the damaged
fiber layer is more compliant than the matrix, the fiber volume fraction has a negligible
effect on the stress intensity factor.
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4. For a cracked fiber, as the fiber to the matrix elastic moduli ratio increases, the
mode of the interface failure is more likely to be the shear mode than the opening mode,
assuming that the matrix and the interfacial strengths are constant for all cases.

5. The matrix crack initiation stress is inversely proportional to the local fiber spacing.
6. For typical hybrid polymer composites, where half of the high elastic moduli fibers

are replaced by low elastic moduli fibers, the stress intensity factor at the crack tips may
increase only by as much as 10%.
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